Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Many western scientific disciplines adopted Indigenous Knowledge and terminology without deference or understanding of the original meanings and values attached to Indigenous terms and concepts. This form of scientific appropriation has become a serious issue in light of decolonizing Arctic research. The notion of Alaas is an example of such appropriation by the western science-based system of Indigenous knowledge about human-nature relations. This paper aims to discuss the term Alaas as it is represented in both western science and Indigenous knowledge. The paper will explore the development of ‘alaas’ as an international permafrost science term and Alaas as an economic, traditional, cultural and spiritual space of the Sakha People in Northeastern Siberia. In analyzing these histories and meanings, the authors will attempt to provide a pathway to decolonizing western science-appropriated Indigenous terminology.more » « lessFree, publicly-accessible full text available July 25, 2026
- 
            This work coordinates data collection using standard equipment and protocols at North American and Russian sites. These data sets provide the baseline to assess the future rates of change in near-surface permafrost temperatures and permafrost boundaries, and to provide spatial data for validation of climate scenario models and temperature reanalysis approaches. The work represents the United States (US) contribution to the ongoing activities of the Global Terrestrial Network for Permafrost that obtains temperatures in a large number of globally distributed monitoring sites in order to provide a snapshot of permafrost temperatures in both time and space. The US National Science Foundation (NSF) funded this work with award #0520578, #0632400, #0856864, and #1304271.more » « less
- 
            This work coordinates data collection using standard equipment and protocols at North American and Russian sites. These data sets provide the baseline to assess the future rates of change in near-surface permafrost temperatures and permafrost boundaries, and to provide spatial data for validation of climate scenario models and temperature reanalysis approaches. The work represents the United States (US) contribution to the ongoing activities of the Global Terrestrial Network for Permafrost that obtains temperatures in a large number of globally distributed monitoring sites in order to provide a snapshot of permafrost temperatures in both time and space. The US National Science Foundation funded this work with award #0520578, #0632400, #0856864, and #1304271.more » « less
- 
            Tajik, Nazanin (Ed.)Alaska is one of the most seismically active regions of the world. Coincidentally, the state has also experienced dramatic impacts of climate change as it is warming at twice the rate of the rest of the United States. Through mechanisms such as permafrost thaw, water table fluctuation, and melting of sea ice and glaciers, climatic-driven changes to the natural and built-environment influence the seismic response of infrastructure systems. This paper discusses the challenges and needs posed by earthquake hazards and climate change to Alaska’s infrastructure and built environment, drawing on the contributions of researchers and decision-makers in interviews and a workshop. It outlines policy, mitigation, and adaptation areas meriting further attention to improve the seismic resilience of Alaska’s built environment from the perspectives of engineering and complementary coupled human-environmental systems.more » « less
- 
            Abstract In the Arctic, winter soil temperatures exert strong control over mean annual soil temperature and winter CO2emissions. In tundra ecosystems there is evidence that plant canopy influences on snow accumulation alter winter soil temperatures. By comparison, there has been relatively little research examining the impacts of heterogeneity in boreal forest cover on soil temperatures. Using seven years of data from six sites in northeastern Siberia that vary in stem density we show that snow-depth and forest canopy cover exert equally strong control on cumulative soil freezing degrees days (FDDsoil). Together snow depth and canopy cover explain approximately 75% of the variance in linear models of FDDsoiland freezingn-factors (nf; calculated as the quotient of FDDsoiland FDDair), across sites and years. Including variables related to air temperature, or antecedent soil temperatures does not substantially improve models. The observed increase in FDDsoilwith canopy cover suggests that canopy interception of snow or thermal conduction through trees may be important for winter soil temperature dynamics in forested ecosystems underlain by continuous permafrost. Our results imply that changes in Siberian larch forest cover that arise from climate warming or fire regime changes may have important impacts on winter soil temperature dynamics.more » « less
- 
            This work coordinates data collection using standard equipment and protocols at the Alaskan and Russian borehole sites. These borehole temperature data sets provide the baseline to reconstruct past surface temperatures, to assess the future rates of change in near-surface permafrost temperatures and permafrost boundaries, and to provide spatial data for validation of climate scenario models and temperature reanalysis approaches. This represents the Russia contribution to the ongoing activities of Global Terrestrial Network for Permafrost that obtains temperatures in a large number of globally distributed boreholes in order to provide a snapshot of permafrost temperatures in both time and space. Included are files with the depth, temperature, and date of soil sampled at a number of sites. Site information (site name, latitude, longitude) by file name can be found in the file 'metadata_2022.csv'.more » « less
- 
            Abstract Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we presentThe Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Organic-rich surficial materials of the Arctic are a storehouse of frozen carbon (C) of global consequence. Climate ultimately controls the exchange of carbon between this reservoir and the atmosphere, but the long-term relation between climate and permafrost carbon is highly uncertain. This study draws from climate changes that occurred during the recent geologic past (late glacial and Holocene), which serve as natural experiments, to quantify the long-term (millennial-scale) relation between climate and the mass of carbon that accumulated under distinctly different climate states. Whereas previous studies of the effects of climate changes on permafrost carbon have generally focused on lakes and peatlands of low-lying terrain, this study provides complementary information from upland deposits that mantle hilly terrain, possibly the least-well known component of the arctic frozen organic carbon inventory. The project applies and develops new approaches to investigating the relation between climate and carbon sequestration in an understudied setting and at long time scales by bringing together expertise in Arctic paleoecology, paleoclimatology, surficial geology, geochronology and quantitative geomorphology. This paleo perspective provides a unique approach to help infer how permafrost and its C reservoir may react in the future.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
